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Abstract

In systems of stiff Ordinary Differential Equations (ODEs) both fast and slow time scales are encountered. The fast

time scales are responsible for the development of low-dimensional manifolds on which the solution moves according to

the slow time scales. In this paper, methodologies for constructing highly accurate (i) expressions describing the man-

ifold, and (ii) simplified non-stiff equations governing the slow evolution of the solution on the manifold are developed,

according to an iterative procedure proposed in the Computational Singular Perturbation (CSP) method. It is shown

that the increasing accuracy achieved with each iteration is directly related to the time rates of change of the CSP vec-

tors spanning the manifold along the solution trajectory. Here, an algorithm is presented which implements these cal-

culations and is validated on the basis of two simple examples.
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1. Introduction

In spite of the rapid and significant increase in computing power of current processors and parallel com-

putational architectures, the numerical solution of multi-scale problems (chemical kinetics, biological mod-

eling, atmospheric prediction, control, electronics, etc.) remains a daunting task, mostly because the time
scales of interest are usually much slower than the fastest time scales characterizing this class of systems.

The mathematical models which attempt at reproducing this phenomenology, are usually classified as being

‘‘stiff’’.

Stiffness can indeed be associated with a spread in the magnitude of (i) the real, negative part of the

eigenvalues of the system, and/or (ii) their imaginary part; the first category being associated with the pres-

ence of dissipative processes, such as viscous dissipation and/or chemical reactions, and the latter to non-

linear convective transport or nonlinear oscillatory behavior. In this work, we will consider stiff systems of

dissipative nature only, that is systems characterized by a number of eigenvalues with a dominant negative
real part, or more in general by characteristic time scales providing a fast exponential relaxation of the pro-

cesses associated with these fast time scales.

Stability requires explicit schemes of integration to advance the numerical solution of a stiff problem

with time steps of the order of the fastest scale, whereas the time scale of interest can be several orders

of magnitude slower. This makes the numerical integration exceedingly inefficient. A standard approach

to circumvent the stability constraint is to adopt implicit schemes of integration, among which the family

of BDF schemes due to Gear [1] remains the most widely adopted. These schemes have been incorporated

in very successful software libraries (LSODE, DVODE, etc. [2–4]).
The occurrence of time scales much faster than the one of interest is what makes stiff problems difficult to

solve. On the other hand, it also paves an alternate route to the adoption of implicit schemes, in order to

circumvent the stability constraints of explicit schemes. In fact, given an N-dimensional problem, where N

might be the number of species in a chemical mechanism, the role of the fast scales in the dynamics of a stiff

problem is to constrain the point dynamics within a hypersurface with a dimension lower than N, thus effec-

tively reducing the number of degrees of freedom left available. Therefore, the solution of the stiff problem

can be sought by constructing a reduced model, approximating the original one, such that it describes just

the point dynamics restricted within this low-dimensional hypersurface. The reduced model will be of lower
dimension and free from the fast scales, as compared to the original one. Ultimately, the construction of the

reduced model requires an accurate identification of the low-dimensional hypersurface.

In chemical kinetics, the use of the Steady-State Approximation (SSA) [5,6] was one of the first attempts

to follow this concept. SSA has been accepted widely, even though its theoretical foundations, domain of

applicability, and ease of use, have been questioned since its inception [7–9].

The theoretical foundations supporting SSA have been reconsidered in Fraser [10], who adopted a geo-

metrical framework to discuss the different approximations of the dynamics of stiff systems. Fraser pointed

out that the reduced model as identified by SSA must be described as consisting of (i) a lower-dimensional
hypersurface S in the phase space of the system, and (ii) a set of non-stiff ODEs describing the evolution of

the non-steady-state species which is constrained to occur in S. The hypersurface S is identified by the set of

algebraic equations obtained by enforcing that, for some selected (‘‘steady-state’’) species, the RHS of the

original set of ODEs be identically zero.

The SSA had three major flaws, namely (i) it is difficult to identify the correct set of steady-state (SS)

species, (ii) the trajectory flow – defined as the set of all possible trajectories satisfying the stiff ODEs –

of the system is not attracted by the hypersurface defined by SSA, but by a different low-dimensional hyper-

surface, and (iii) the SS species and the related hypersurface might be time dependent.
Fraser showed that, for the class of stiff (dissipative) systems, the trajectory flow undergoes a strong con-

traction, that is trajectories tend to approach one another as time increases, onto a low-dimensional

(smooth) hypersurface in the N-dimensional phase space, which lies close to the SSA surface (a reason
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justifying the partial success of SSA) and yet different from it. The hypersurface asymptotically attracting

all trajectories is usually referred to as the Slow Invariant Manifold (SIM) of the stiff system.

A rigorous mathematical definition of a SIM can be found in [11] for the class of singularly perturbed

dynamical systems. The Fenichel theory establishes the existence of a SIM for problems involving a wide

temporal gap between slow and fast dynamics. This SIM is characterized by being both (i) an invariant of
the dynamics and (ii) exponentially attractive for the trajectory flow.

The complexity of the problems of interest today motivated research on the development of algorithms

for the computational identification of SIMs. From these activities, two broad classes of approaches

emerged, one aimed at identifying the locus of the points in the phase space belonging to the SIM, the other

attempting at identifying both the SIM hypersurface and the main geometrical properties of the SIM, i.e. its

invariant subspaces and the characteristic time scales associated with them.

The method due to Fraser [10] belongs to the first class of approaches, with further developments by

Roussel and Fraser [12]. It involves an iterative scheme to find the SIM as the fixed point, in the function
space, of a contraction mapping of the invariance equation associated with the dynamical system. The pro-

cedure is explicit if the system is linear in the fast variable(s), and implicit otherwise; thus involving the solu-

tion of a nonlinear set of equations to find the SIM geometry numerically. Under proper conditions, this

method yields, term by term, the correct asymptotic expansion of the SIM [13].

The procedure proposed in [12], besides requiring the definition of the proper parametrization of the

SIM, does not always converge for an infinite number of iterations, and might indeed diverge when the cur-

vature of the manifold is too high [12].

In this regard, Davis and Skodje [14] proposed a faster-converging variant of the Roussel–Fraser algo-
rithm that involved the addition of a pseudo-time derivative to the functional equation. A different ap-

proach to stabilize Fraser�s iterations was pointed out by Roussel [15], who suggested the modification

of the functional equation according to a mapping which circumvents the convergence failures while leaving

the fixed point unaltered. Nafe and Maas [16] proposed an extension of the relaxation procedure introduced

by Davis and Skodje [14], which involves the solution of a set of (pseudo) time dependent nonlinear PDEs,

defined in the phase space of the m parameters. This procedure, starting from a proper initial guess – say the

m-dimensional Intrinsic Low-Dimensional Manifold (ILDM), finds the correct SIM at large times.

The Computational Singular Perturbation (CSP) method, co-developed by Lam and Goussis [17–22],
belongs to the second class of approaches. Given an N-dimensional problem, CSP provides a geometrical

description of the SIM, by identifying the set of ‘‘fast’’ basis vectors, Ar, and the corresponding set of dual

vectors, Br, spanning the M-dimensional ‘‘fast’’ subspace (with M < N), which is locally orthogonal to the

(N � M)-dimensional SIM.

The essential part of the CSP method involves an iterative procedure, specifically designed to identify the

basis vectors that span the two subdomains, where the fast and slow time scales act, respectively; the latter

subdomain being identical to the SIM. The process starts with an arbitrary initial guess for the ‘‘fast’’ basis

vectors Ar, that eventually will span the fast subdomain, and their dual Br. After each iteration, better
approximations of the ‘‘fast’’, and its complementary ‘‘slow’’, subspaces are obtained. There exist two types

of iterations which are independent of each other: the Ar- and Br-refinement procedures. The Br-refinement

increases the accuracy in the description of the SIM, by better approximating the ‘‘fast’’ subspace, while,

the Ar-refinement makes the simplified problem non-stiff by better approximating the ‘‘slow’’ subspace.

Seen from a different point of view, the Br-refinement decreases the influence of the slow time scales on

the computed approximation of the ‘‘fast’’ subspace, while each Ar-refinement decreases the influence of

the fast time scales on the computed approximation of the ‘‘slow’’ subspace.

At each iteration, the improvement in the approximation of the Ar and Br basis vectors is achieved by
taking into account the geometrical characteristics of the manifold (such as local curvature and higher or-

der terms). The accuracy improves at each iteration by a factor of the order of e, the small parameter in the

singular perturbation expansion of the CSP method.
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The successive approximations of the basis vectors, obtained after each CSP iteration, converge (i) to the

local eigenvectors of the Jacobian matrix of the dynamical system if the contribution of the higher order

terms, quantified in the refinement formulae by the time rates of change of the basis vectors, is neglected,

yielding a leading order approximation of the SIM, or (ii) to the correct asymptotic representation of the

SIM, in powers of e, if this contribution is accounted for [23].
As ‘‘fast’’ basis vectors, the ILDM method of Maas and Pope [24–26] selects the right and left eigenvec-

tors of the local Jacobian of the problem flow associated with the negative eigenvalues with the largest

absolute value of the real part.1 This choice of basis vectors makes ILDM exact only for linear problems,

and for nonlinear problems in the limit of a vanishingly small time scale separation e [13,23]. According to

the ILDM method, the SIM is generated and stored as a look-up table, and this requires the prescription of

the SIM�s dimension a priori as a constant throughout the phase space.

As previously noted, CSP provides high-order accuracy for a nonlinear problem by following a rather

straightforward procedure, the CSP refinements, which involve the time rates of change of the CSP vectors.
Whereas the CSP refinements have been introduced long ago [18,20], no specific analysis has been carried

out yet on how to evaluate the time rates of change of the CSP vectors. Moreover, although the CSP meth-

od has been adopted in several investigations (e.g. [27–31]), the higher order effects have never been exam-

ined due to the lack of a reliable method for computing the time rates of change of the CSP vectors. As a

matter of fact, their calculation is straightforward when the analytic expressions of the basis vectors can be

obtained, for example with the help of a symbolic manipulator. This is, for example, the case in the Davis

and Skodje model [14] analyzed by Zagaris et al. in [23] to study the asymptotic properties of the CSP

method. When the analytic expressions of the basis vectors cannot be obtained, then one could envisage
computing the time rates of change of the CSP vectors by finite differences evaluated along a trajectory

path. However, eigenvalue crossings alter the ordering of the vectors and require an explicit tracking of

the time evolution of the vectors. Moreover, what really matters is the time rate of change of the fast

subspace, and not quite the rotation of the individual vectors.

In the present work, we provide explicit formulae for the calculation of the time rates of change of the

CSP vectors for a general nonlinear problem. These formulae show that the computation of the time rates

of change of the CSP vectors requires the calculation of the time rate of change of the Jacobian matrix of

the RHS of the original ODEs (dJ/dt, d2J/dt2, . . .). They also show that these terms depend on the state of
the system only, being local measures of the geometrical characteristics of the manifold (such as local cur-

vature and higher order terms), as they involve the terms oJ/oyi, o2J/oyioyj, . . .
As a consequence, the time rates of change of the CSP vectors also depend exclusively on the local state

variables, as well as the local Jacobian matrix and the SIM dimension. Hence, all SIMs properties can be

stored in look-up tables, generated by tabulation methods like PRISM [32] or ISAT [33], possibly in con-

junction with the development of efficient explicit schemes of integration of stiff problems based upon a

time-scale splitting [30,34].

We will verify, with reference to twomodel problems, the validity of the formulae for the calculation of the
time rates of change of the CSP vectors. The first model problem is a planar ODE with an explicit, constant,

small parameter and prescribed slow and fast variables. It has been proposed and discussed byDavis and Sko-

dje [14], and reconsidered by Kaper and Kaper in [13]. Among other features, the Davis and Skodje model

possesses an exact representation of the manifold, a circumstance enabling us to obtain unambiguous error

estimates. For this model problem, the time rates of change of the CSP vectors can be obtained in closed form.

The second model problem describes the kinetics of a 3-species model chemical system, which mimicks

more realistic chemical mechanisms, possibly involving many tens of species and hundreds of reactions,
1 The basis vectors in the first versions of ILDM were obtained by a Schur decomposition of the Jacobian, which in most cases is

equivalent to the choice of the right/left eigenvectors of the Jacobian as the bases in the tangent/cotangent spaces.
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characterized by having a non-constant, non-explicitly defined small parameter and non-prescribed slow

and fast variables. Moreover, the CSP vectors and their time rates of change are sufficiently simple that they

can still be evaluated algebraically, but complicated enough so as to allow a non-trivial validation of the

procedures for the CSP refinements.

The manuscript is organized as follows. First, a brief outline of the basic CSP concepts will be presented
in Section 2, as it is relevant to the present analysis; a more detailed presentation of the CSP method can be

found in [18–21] for the case of ODEs and in [19,35,31] for the case of PDEs. The specific details of the

implementation of the CSP refinements when the time rates of change of the CSP vectors are retained

are illustrated in Sections 3 and 4. Finally, the results of the method as applied to the two model problems

are reported and discussed in Sections 5 and 6 to explain the different features of the method and the means

by which high accuracy results are obtained.
2. Basic CSP concepts

We consider the evolution of a physical process governed by a system of N ordinary differential equa-

tions of the form:
dy

dt
¼ gðyÞ; ð1Þ
where y is the N-dimensional vector of the dependent variables and g is an algebraic function of y. It is
assumed that Eq. (1) is stiff; i.e. some of the fastest time scales in the problem are much faster than the time

scales of interest.

Following the CSP method, at each point in the phase space, the vector g can be decomposed in two

components by projecting it onto the M-dimensional fast and the (N �M)-dimensional slow subspaces

(i.e., the subspaces where the fast and slow time scales act, respectively) spanned by the CSP vectors ai
(i = 1, M) and aj (j = M + 1, N), which can be collected in the N · M and N · (N �M)-dimensional matri-

ces Ar(k, m) and As(k, m) defined as follows:
Arðk;mÞ ¼ a1ðk;mÞ; . . . ; aMðk;mÞ½ �;
Asðk;mÞ ¼ aMþ1ðk;mÞ; . . . ; aN ðk;mÞ½ �;

ð2Þ
where k and m denote the levels of two kinds of refinement, to be discussed next. Each basis vector ai (or
mode) is associated with a time scale acting along the corresponding direction. The modes are ordered

according to their speed; the first mode associated with the fastest scale and the last with the slowest.

Let a second set of CSP basis vectors defined by bi (i = 1,M) and bj (j = M + 1, N), which are collected in

the M · N and (N � M) · N-dimensional matrices Br(k, m) and Bs(k, m):
Brðk;mÞ ¼

b1ðk;mÞ
b2ðk;mÞ

..

.

bMðk;mÞ

2
66664

3
77775; Bsðk;mÞ ¼

bMþ1ðk;mÞ
bMþ2ðk;mÞ

..

.

bN ðk;mÞ

2
66664

3
77775. ð3Þ
The bi vectors are the duals of the ai vectors. Thus, due to orthogonality, the four matrices satisfy the

relations:
Brðk;mÞArðk;mÞ ¼ IMM ; Brðk;mÞAsðk;mÞ ¼ 0MN�M ;

Bsðk;mÞArðk;mÞ ¼ 0N�M
M ; Bsðk;mÞAsðk;mÞ ¼ IN�M

N�M

ð4Þ
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and
Arðk;mÞBrðk;mÞ þ Asðk;mÞBsðk;mÞ ¼ INN ; ð5Þ

where Ivv is the v-dimensional unit matrix and 0uv is the u · v zero matrix.

Projecting the RHS of Eq. (1) onto the fast and slow subspaces yields
dy

dt
¼ Arðk;mÞf rðk;mÞ þ Asðk;mÞf sðk;mÞ; ð6Þ
where the M and (N � M)-dimensional vectors fr(k, m) and fs(k, m) are defined as
f rðk;mÞ ¼

f 1ðk;mÞ
f 2ðk;mÞ

..

.

f Mðk;mÞ

2
66664

3
77775; f sðk;mÞ ¼

f Mþ1ðk;mÞ
f Mþ2ðk;mÞ

..

.

f Nðk;mÞ

2
66664

3
77775; ð7Þ
and where each mode amplitude fi is defined as
f iðk;mÞ ¼ biðk;mÞ � g. ð8Þ

Where, in the phase space, the amplitudes of the M fastest modes attain negligible magnitude, i.e. the fol-

lowing algebraic equations hold:
f rðk;mÞ ¼ Brðk;mÞg � 0M1 ; ð9Þ
then Eq. (9) describe the SIM�s shape which has dimension (N � M). There, the correspondingM fast scales

have no role anymore in the point dynamics and the locally characteristic time scale is a slow one. This

means that the point dynamics cannot move along a trajectory with a component in the ‘‘fast’’ directions

ai (i = 1,M), being thus restricted to move only along the ‘‘slow’’ ones aj (j = M + 1, N); i.e. along the SIM,
according to the equations:
dy

dt
� Asðk;mÞf sðk;mÞ ¼ I � Arðk;mÞBrðk;mÞ½ �g; ð10Þ
where the orthonormality condition, Eq. (5), has been employed in the derivation of the second equal-
ity. This simplified system is not stiff, since the modes associated with the M fastest time scales are

ignored.

As Eqs. (9) and (10) show, for the construction of both the equation describing the manifold and the

simplified problem, it is sufficient to have available the fast basis vectors Ar and Br only.

As mentioned previously, there are two kinds of CSP refinements. One kind alters Br and As (defined as

the Br-refinement), leaving Bs and Ar unaffected, and is related to the accuracy in the description of the

manifold [18,20]. The other kind alters Ar and Bs (defined as the Ar-refinement), leaving Br and As unaf-

fected, and is related to the non-stiffness of the simplified problem [18,20]. Any number of Br- (or Ar-)
refinements can be carried out, independently of the Ar- (or Br-) refinements. These two kinds of refine-

ments are performed through the relations:
Brðk1 þ 1;m1Þ ¼ T r
rðk1;m1Þ

dBrðk1;m1Þ
dt

þ Brðk1;m1ÞJ
� �

; ð11Þ

Arðk1 þ 1;m1Þ ¼ Arðk1;m1Þ; ð12Þ
Bsðk1 þ 1;m1Þ ¼ Bsðk1;m1Þ; ð13Þ
Asðk1 þ 1;m1Þ ¼ I � Arðk1 þ 1;m1ÞBrðk1 þ 1;m1Þ½ �Asðk1;m1Þ; ð14Þ
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where
T r
rðk1;m1Þ ¼ Kr

rðk1;m1Þ
� ��1 ¼ dBrðk1;m1Þ

dt
þ Brðk1;m1ÞJ

� �
Arðk1;m1Þ

� ��1

; ð15Þ
and
Arðk2;m2 þ 1Þ ¼ � dArðk2;m2Þ
dt

þ JArðk2;m2Þ
� �

T r
rðk2;m2Þ; ð16Þ

Brðk2;m2 þ 1Þ ¼ Brðk2;m2Þ; ð17Þ
Bsðk2;m2 þ 1Þ ¼ Bsðk2;m2Þ I � Arðk2;m2 þ 1ÞBrðk2;m2 þ 1Þ½ �; ð18Þ
Asðk2;m2 þ 1Þ ¼ Asðk2;m2Þ; ð19Þ
where
T r
rðk2;m2Þ ¼ Kr

rðk2;m2Þ
� ��1 ¼ dBrðk2;m2Þ

dt
þ Brðk2;m2ÞJ

� �
Arðk2;m2Þ

� ��1

; ð20Þ
and ki and mi denote the number of Br- and Ar-refinements, respectively, already performed. The subscript

i was introduced here in order to indicate that any number of Ar- or B
r-refinements can precede one addi-

tional Br- or Ar-refinement; the matrix T r
r being updated accordingly. Of course, both kinds of refinement

(11)–(15) and (16)–(20) preserve the orthonormality of the CSP vectors, Eqs. (4) and (5). As mentioned in

the introduction, the Br- and Ar-refinements, respectively, decrease the influence of the slow and fast time

scales on the computed approximation of the ‘‘fast’’ and ‘‘slow’’ subspaces at the (k, m)-th level. As a re-
sult, the contamination of the amplitudes in f r and f s, respectively, by the slow and fast time scales will

decrease. This development will allow the fast time scales to drive f r to even smaller values and will rein-

force the control of the slow time on the evolution of f s, making the simplified problem, as stated by Eqs.

(9) and (10), more accurate and non-stiff. Details on these effects of the Ar- or B
r-refinements are discussed

in Appendix A.

If the time derivative terms in Eqs. (11), (15), (16) and (20) are ignored, the iterative formulae of the

block power method for the approximation of the left (Eqs. (11)–(14)) and right (Eqs. (16)–(19)) eigenvec-

tors of a matrix are recovered [36–38]. In particular, without the time derivative terms, a set of M arbitrary
vectors (column or row) will improve the approximation of the subspace spanned by the M eigenvectors

(right or left) corresponding to the M largest eigenvalues of J (in magnitude), by a factor of

e = |k(M + 1)/k(M)| after each (Ar- or B
r-) refinement, where k(i) is the eigenvalue with the i-th largest mag-

nitude and e < 1. The smaller the values of e, the higher the rate of convergence.

The appearance of the time derivative terms in Eqs. (11)–(15) and (16)–(19) is associated with the ability

of the CSP vectors to capture the nonlinear effects, by following the rotation in time of the basis vectors

spanning the fast and slow subspaces. In principle, one can carry out any number of Br- and/or Ar-refine-

ments. However, for practical situations, computing the time derivatives in Eqs. (11), (15), (16) and (20) is
not a straightforward procedure. Their direct numerical computation along a solution trajectory is ex-

cluded, since such an approach cannot handle the case where corresponding eigenvalues cross each other

and the ordering of the CSP vectors changes in time. Yet, the time derivatives can be evaluated:

(i) when the analytic expressions of the basis vectors can be obtained, for example with the help of a sym-

bolic manipulator; in this case the time derivatives of a and b can be directly evaluated as
daj
dt

¼
X
i¼1;N

oaj
oyi

gi; ð21Þ
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dbj

dt
¼
X
i¼1;N

obj

oyi
gi ð22Þ
for any number of refinements, since the partial derivatives oaj/oy
i and obj/oyi can be computed

analytically.

(ii) when the analytic expressions of the basis vectors cannot be obtained, typically when the number of

unknowns is larger than 3–4, then the time derivatives can be evaluated for a limited number of refine-

ments as discussed in the following two sections.
3. Implementation of CSP refinements

The implementation of the CSP vector procedure, discussed here, can be defined as composed of two

phases: (1) a first refinement, wherein the time derivatives of the basis vectors are neglected, yielding leading

order accuracy and (2) a second refinement, wherein the time derivatives are included, providing higher or-
der accuracy.

Phase (1) is identical to one block-power refinement and, if carried out many times, the M fast and

N �M slow basis vectors will span the two subspaces, the M fast and N �M slow eigenvectors of J,

respectively. Considering a nonlinear source term in Eq. (1), additional (more than one) refinements

can easily be performed, but are ineffective in improving the leading order accuracy. On the other hand,

Phase (2) can practically be carried out just once, providing second order accuracy. This limitation is due

to the increasing cost of obtaining higher order time derivatives of the basis vectors needed in further

refinements.
Each of the two phases is composed of two steps which, as previously said, are referred to as Br-refine-

ment (step 1, identified by index k) and Ar-refinement (step 2, identified by index m), respectively. Formulae

for the evaluation of Br(k, m) and Ar(k, m) for k = 1, 2 and m = 1, 2 are presented below together with

expressions for the necessary basis vector time derivatives.
3.1. Phase (1)

Consider the case where the first guess for the refinement procedure of the CSP basis vectors Br(0, 0) and
Ar(0, 0) is a set of arbitrary vectors with
dBrð0; 0Þ
dt

¼ 0;
dArð0; 0Þ

dt
¼ 0. ð23Þ
3.1.1. Step 1: the Br-refinement

Under the assumptions (23), the Br-refinement yields
krrð0; 0Þ ¼ Brð0; 0ÞJArð0; 0Þ;

srrð0; 0Þ ¼ krrð0; 0Þ
� ��1

;

Brð1; 0Þ ¼ srrð0; 0ÞBrð0; 0ÞJ ;
Arð1; 0Þ ¼ Arð0; 0Þ;
Bsð1; 0Þ ¼ Bsð0; 0Þ;
Asð1; 0Þ ¼ I � Arð1; 0ÞBrð1; 0Þ½ �Asð0; 0Þ ¼ I � Arð0; 0ÞBrð1; 0Þ½ �Asð0; 0Þ.
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The end effect of step 1 is to lower the norm of the upper-right off-diagonal block:
krsð1; 0Þ ¼ Brð1; 0ÞJAsð1; 0Þ ¼ O ekrsð0; 0Þ
� �
by an order e = |sM/sM+1| < 1 (where sM and sM+1 are defined in Appendix A, Eq. (A.23)), thereby making

the fast modes ‘‘purer’’ by decoupling them from the slow modes, while the lower left off-diagonal block is

left unchanged:
ksrð1; 0Þ ¼ Bsð0; 0ÞJArð0; 0Þ ¼ ksrð0; 0Þ.
3.1.2. Step 2: the Ar-refinement

The Ar-refinement yields
krrð1; 0Þ ¼ Brð1; 0ÞJArð0; 0Þ;

srrð1; 0Þ ¼ krrð1; 0Þ
� ��1

;

Arð1; 1Þ ¼ JArð0; 0Þsrrð1; 0Þ;
Brð1; 1Þ ¼ Brð1; 0Þ;
Asð1; 1Þ ¼ Asð1; 0Þ;
Bsð1; 1Þ ¼ Bsð1; 0Þ I � Arð1; 1ÞBrð1; 1Þ½ � ¼ Bsð0; 0Þ I � Arð1; 1ÞBrð1; 0Þ½ �.
The end effect of step 2 is to lower the norm of the lower left off-diagonal block:
ksrð1; 1Þ ¼
dBsð1; 1Þ

dt
þ Bsð1; 1ÞJ

� �
Arð1; 1Þ ¼ O eksrð1; 0Þ

� �
¼ O eksrð0; 0Þ

� �

by an order e = |sM/sM+1| < 1, thereby making the slow modes ‘‘purer’’ by decoupling them from the fast

modes, while the upper right off-diagonal block is left unchanged:
krsð1; 1Þ ¼
dBrð1; 1Þ

dt
þ Brð1; 1ÞJ

� �
Asð1; 1Þ ¼

dBrð1; 0Þ
dt

þ Brð1; 0ÞJ
� �

Asð1; 0Þ ¼ krsð1; 0Þ ¼ O ekrsð0; 0Þ
� �

.

As already pointed out, the refinement in Phase (1) is identical to one Mises Power method [38] for finding
eigenvalues and eigenvectors of J. It follows that if the eigenvectors of J are chosen as initial basis in Eq.

(23), Phase (1) is redundant.
3.2. Phase (2)

In the refinements of Phase (2) the basis vector time derivatives are calculated. As indicated above,

including these terms in the refinements accounts for the high-order effects of nonlinearities, resulting in

a better decoupling between fast and slow subspaces. The initial basis may be chosen as that resulting from
Phase (1) or as the eigenvectors of J (in which case Phase (1) is skipped).
3.2.1. Step 1: the Br-refinement

The Br-refinement yields
krrð1; 1Þ ¼
dBrð1; 1Þ

dt
þ Brð1; 1ÞJ

� �
Arð1; 1Þ;

srrð1; 1Þ ¼ krrð1; 1Þ
� ��1

;
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Brð2; 1Þ ¼ srrð1; 1Þ
dBrð1; 1Þ

dt
þ Brð1; 1ÞJ

� �
¼ srrð1; 1Þ

dBrð1; 0Þ
dt

þ Brð1; 0ÞJ
� �

;

Arð2; 1Þ ¼ Arð1; 1Þ;
Bsð2; 1Þ ¼ Bsð1; 1Þ;
Asð2; 1Þ ¼ I � Arð2; 1ÞBrð2; 1Þ½ �Asð1; 1Þ ¼ I � Arð1; 1ÞBrð2; 1Þ½ �Asð1; 0Þ.
The effect of step 1 is to lower the norm of the upper-right off-diagonal block:
krsð2; 1Þ ¼
dBrð2; 1Þ

dt
þ Brð2; 1ÞJ

� �
Asð2; 1Þ ¼ O ekrsð1; 1Þ

� �
¼ O ekrsð1; 0Þ

� �
¼ O e2krsð0; 0Þ

� �

by an order e = |sM/sM+1| < 1, thereby making the fast modes ‘‘purer’’ by decoupling them from the slow

modes, while the lower left off-diagonal block is left unchanged:
ksrð2; 1Þ ¼
dBsð2; 1Þ

dt
þ Bsð2; 1ÞJ

� �
Arð2; 1Þ ¼

dBsð1; 1Þ
dt

þ Bsð1; 1ÞJ
� �

Arð1; 1Þ

¼ ksrð1; 1Þ ¼ O eksrð1; 0Þ
� �

¼ O eksrð0; 0Þ
� �

.

3.2.2. Step 2: the Ar-refinement

The Ar-refinement yields
krrð2; 1Þ ¼
dBrð2; 1Þ

dt
þ Brð2; 1ÞJ

� �
Arð2; 1Þ;

srrð2; 1Þ ¼ krrð2; 1Þ
� ��1

;

Arð2; 2Þ ¼ � dArð2; 1Þ
dt

þ JArð2; 1Þ
� �

srrð2; 1Þ ¼ � dArð1; 1Þ
dt

þ JArð1; 1Þ
� �

srrð2; 1Þ;

Brð2; 2Þ ¼ Brð2; 1Þ;
Asð2; 2Þ ¼ Asð2; 1Þ;
Bsð2; 2Þ ¼ Bsð2; 1Þ I � Arð2; 2ÞBrð2; 2Þ½ � ¼ Bsð1; 1Þ I � Arð2; 2ÞBrð2; 1Þ½ �.
The effect of step 2 is to lower the norm of the lower-left off-diagonal block:
ksrð2; 2Þ ¼
dBsð2; 2Þ

dt
þ Bsð2; 2ÞJ

� �
Arð2; 2Þ ¼ O eksrð2; 1Þ

� �
¼ O e2ksrð1; 0Þ

� �
¼ O e2ksrð0; 0Þ

� �

by an order e = |sM/sM+1| < 1, thereby making the slow modes ‘‘purer’’ by decoupling them from the fast

modes, while the upper right off-diagonal block is left unchanged:
krsð2; 2Þ ¼
dBrð2; 2Þ

dt
þ Brð2; 2ÞJ

� �
Asð2; 2Þ ¼

dBrð2; 1Þ
dt

þ Brð2; 1ÞJ
� �

Asð2; 1Þ

¼ krsð2; 1Þ ¼ O ekrsð1; 1Þ
� �

¼ O ekrsð1; 0Þ
� �

¼ O e2krsð0; 0Þ
� �

.

4. Time rates of change of CSP vectors

To actually carry out the calculations involved in Phase (2) requires computing a number of time deriv-
atives of the CSP vectors. The derivation yielding the formulae to evaluate these terms is reported in

Appendix B. For convenience, the main results are summarized below:
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dBrð1; 1Þ
dt

¼ dBrð1; 0Þ
dt

¼ srrð0; 0ÞBrð0; 0Þ dJ
dt

I � Arð0; 0ÞBrð1; 0Þ½ �; ð24Þ

dArð2; 1Þ
dt

¼ dArð1; 1Þ
dt

¼ I � Arð1; 1ÞBrð1; 0Þ½ � dJ
dt

Arð0; 0Þsrrð1; 0Þ � Arð1; 1Þ
dBrð1; 0Þ

dt
Arð1; 1Þ; ð25Þ

dBrð2; 1Þ
dt

¼ srrð1; 1Þ
dBrð1; 0Þ

dt
J þ Brð1; 0Þ dJ

dt
þ d2Brð1; 0Þ

dt2

� �
I � Arð1; 1ÞBrð2; 1Þ½ �

� Brð2; 1Þ dArð1; 1Þ
dt

Brð2; 1Þ; ð26Þ
where
d2Brð1; 0Þ
dt2

¼ dsrrð0; 0Þ
dt

Brð0; 0Þ dJ
dt

þ srrð0; 0ÞBrð0; 0Þ d
2J
dt2

� �
I � Arð0; 0ÞBrð1; 0Þ½ �

� srrð0; 0ÞBrð0; 0Þ dJ
dt

Arð0; 0Þ
dBrð1; 0Þ

dt
. ð27Þ
Since Eq. (27) involves the evaluation of the time rate of change of the Jacobian matrix dJ/dt, and of

higher-order rates d2J/dt2 as well, and given that Eqs. (24)–(26) involve dJ/dt, it follows that, in Phase

(2), the Br-refinement requires the availability of dJ/dt, while the Ar-refinement requires the availability
of both dJ/dt and d2J/dt2. These quantities can be evaluated from the expressions:
dJ
dt

¼
X
i¼1;Ns

oJ
oyi

dyi

dt
¼
X
i¼1;Ns

oJ
oyi

gi; ð28Þ

d2J
dt2

¼
X

i;j¼1;Ns

o2J
oyioyj

gi þ oJ
oyi

J
� �

gj; ð29Þ
which show that dJ/dt and d2J/dt2 depend on the state of the system only. They are local measures of the

geometrical characteristics of the manifold (such as local curvature and higher-order terms), since they in-
volve the terms oJ/oyi and o2J/oyioyj. As a consequence, the time rates of change of the CSP vectors also

depend exclusively on the local state variables. Hence, tabulation methods, such as PRISM [32] or ISAT

[33], can also be used with the CSP refinement procedure to generate look-up tables, either on-line or

off-line, for SIMs of high-order accuracy found by means of the CSP refinements procedure.

5. The Davis–Skodje problem

The model problem analyzed in this section and the next was first proposed by Davis and Skodje in [14].

It allows us to demonstrate the ability of CSP iterations to return the correct asymptotic expansion of the

approximate SIM for a stiff system with an explicit, constant, small parameter and prescribed slow and fast

variables. This same goal has been pursued by Zagaris et al. in [23] with reference to the Michaelis and

Menten mechanism. Since this model is planar (N = 2), it is possible to evaluate the CSP vectors and their

time rates of change algebraically.

Consider then the following system of ODEs:
dy
ot

¼ 1

e
�y þ z

1þ z

� �
� z

ð1þ zÞ2
; ð30Þ

dz
ot

¼� z; ð31Þ
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subject to the initial conditions y(0) = y0 and z(0) = z0; the small parameter e is explicit and constant and

much smaller than one, and the prescribed slow and fast variables are z and y, respectively. This system

has the analytical solution:
nifoldFig. 1.2) and (33)) as they appt al. / Journ765
yðtÞ ¼ y0 �
z0

1þ z0

� �
e�t=e þ z0e�t

1þ z0e�t
; ð32Þ

zðtÞ ¼ z0e�t. ð33Þ
Given an arbitrary initial condition (y0, z0), off the manifold, y(t) first experiences a fast rate of change in

the initial O(e) time period, followed by a slow rate of change at later times. As shown in Fig. 1, the solution

trajectory, for times t � e, closely follows the slow manifold defined by the equation:
heðy; zÞ ¼ y � z
1þ z

¼ 0; ð34Þ
which is invariant under the dynamics of Eqs. (30) and (31) for z P 0, and is independent of e [14,13].

5.1. The optimal CSP vectors

Let us now examine what one would expect to achieve after employing the CSP method. According to

CSP, Eqs. (30) and (31) can be recast in the form:
d

dt

y

z

� �
¼ a1f 1 þ a2f 2. ð35Þ
Since, according to the differential equations (30) and (31) and the solutions (32) and (33), the fast time scale

affects only the variable y, the fast movement of the solution towards the manifold is expected to take place
Trajectories for the Davis and Skodje model (exact solutions provided by Eqs.roach and move alongal of Computational Physics 209 (2005) 754…786
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along the y-axis. It is reasonable then for the vector a1, along which the fast time scale acts, to have the

form:
a1 ¼ ½1; 0�T. ð36Þ

Indeed, as shown in Fig. 1, during the initial fast transient period, the fast time scale tends to move the

solution along a trajectory parallel to the y-axis towards the manifold, independent of the initial values

y0 and z0. In addition, knowing the expression describing the manifold, Eq. (34), in order for the amplitude
f1 to vanish as soon as the trajectory hits the manifold, the b1 vector must be given by
b1 ¼ ½1;�ð1þ zÞ�2� ð37Þ

so that when the fast time scale has been exhausted, i.e. t � e, the fast amplitude:
f 1 ¼ b1 � g ¼ ð1Þ 1

e
�y þ z

1þ z

� �
� z

ð1þ zÞ2

" #
þ �1

ð1þ zÞ2

 !
�z½ � ¼ 1

e
�y þ z

1þ z

� �
ð38Þ
becomes exponentially small and the first mode in Eq. (35) can be neglected. Furthermore, differentiating

Eq. (34) shows that when the fast time scale has been exhausted and the solution moves slowly on the man-

ifold, we have
dy ¼ 1

ð1þ zÞ2
dz ð39Þ
suggesting that the vector a2 has the form:
a2 ¼ ½ð1þ zÞ�2
; 1�T. ð40Þ
Finally, since the amplitude f2 is desired to vary at all times slowly, a reasonable choice for the vector b2 is
b2 ¼ ½0; 1� ð41Þ

so that
f 2 ¼ b2 � g ¼ ð0Þ 1

e
�y þ z

1þ z

� �
� z

ð1þ zÞ2

" #
þ 1ð Þ �z½ � ¼ �z. ð42Þ
The basis vectors Eqs. (36) and (40), (37) and (41) are linearly independent and orthogonal. They further

provide
K1
1 ¼� 1

e
; K1

2 ¼ 0; ð43Þ

K2
1 ¼0; K2

2 ¼ �1; ð44Þ
indicating that the fast and slow amplitudes, f1 and f2, are indeed fully decoupled from each other. In sum-
mary, the CSP form, Eq. (35), of the governing equations (30) and (31) is
d

dt

y

z

� �
¼

1

0

� �
f 1 þ ð1þ zÞ�2

1

" #
f 2; ð45Þ
where, using the solutions (32) and (33),
f 1 ¼ �1

e
y0 �

z0
1þ z0

� �
e�t=e;

f 2 ¼ �z0e�t.

ð46Þ
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It follows that, when the fast time scale becomes exhausted, i.e. t� e, the amplitude f1 becomes sufficiently

small and the governing equations simplify to
2 It c

monod
3 As

K2
1 ¼ 0

circum
d

dt

y

z

� �
� ð1þ zÞ�2

1

" #
ð�zÞ ð47Þ
accompanied by the algebraic relation f1 � 0, which describes the manifold. Clearly, the simplified problem

Eq. (47) is non-stiff and its solution is given by
ysðtÞ ¼
z0e�t

1þ z0e�t
� ef 1

� ;

zsðtÞ ¼ z0e�t;

ð48Þ
where
f 1
� ¼ 1

e
�y� þ

z�
1þ z�

� �
¼ 1

e
�y0 þ

z0
1þ z0

� �
e�s�=e.
The symbol s* denotes the time at which the solution starts to be computed from the simplified set of Eq.

(47) and y* and z* are the values of the variables y and z at t = s*. Regarding the fast variable y, the relative

error between the solution obtained from the full and the simplified problem for t > s* is given by the

expression:
yðtÞ � ysðtÞ ¼ y0 �
z0

1þ z0

� �
e�s�=e et=s� � 1

� �
ð49Þ
demonstrating the accuracy achieved by the particular basis vectors used and the resulting simplified
problem.

The identification of optimal basis vectors allowing the construction of the exact SIM and of the related

simplified non-stiff problem cannot be performed so easily when the problem is more complex.2 In that

case, the iterative procedure presented earlier must be employed. Let us now describe what this iterative

procedure provides for the simple problem examined here.
5.2. An arbitrary initial set of basis vectors

Suppose that the initial guess3 for the basis vectors, i.e. (k, m) = (0, 0), is
a1ð0; 0Þ ¼
1

1

� �
; a2ð0; 0Þ ¼

0

�1

� �
;

b1ð0; 0Þ ¼ ½1; 0�; b2ð0; 0Þ ¼ ½1;�1�
ð50Þ
so that
an be shown however that the optimal basis vectors coincide with the eigenvectors of the linear propagator, also referred to as

romy, matrix of the dynamical system [39,40].

initial basis, we could have chosen the identity matrix. However, for the Davis–Skodje problem, this choice provides directly

after the first Ar-refinement. This would prevent us from demonstrating the effect on the Ar-refinements under general

stances.
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f 1ð0; 0Þ ¼ 1

e
�y þ z

1þ z

� �
� z

ð1þ zÞ2
; ð51Þ

f 2ð0; 0Þ ¼ 1

e
�y þ z

1þ z

� �
� z

ð1þ zÞ2
þ z; ð52Þ
and
K1
1ð0; 0Þ ¼ � 1

e
W; K1

2ð0; 0Þ ¼ � 1

e
F z; ð53Þ

K2
1ð0; 0Þ ¼ � 1

e
Wþ 1; K2

2ð0; 0Þ ¼ � 1

e
F z � 1; ð54Þ
where
F z ¼
1

ð1þ zÞ2
� e

1� z

ð1þ zÞ3
and W = 1 � Fz.

Obviously, when the fast time scale becomes exhausted, the fast amplitude is not negligible, but

f1(0, 0) = O(1). In addition, the reduced system
d

dt

y

z

� �
�

0

�1

� �
1

e
�y þ z

1þ z

� �
� z

ð1þ zÞ2
þ z

 !
ð55Þ
is stiff and produces an O(1) error. These results are related to the fact that, as Eqs. (53) and (54) show, all

Ki
j are O(e�1).
5.3. The role of Br-refinements

Performing one Br-refinement, i.e. (k, m) = (1, 0), as illustrated in Section 2, where the time derivatives of

the basis vectors are evaluated analytically, Eqs. (21) and (22), yields
a1ð1; 0Þ ¼W
1

1

� �
; a2ð1; 0Þ ¼ �ðWÞ�1 F z

1

� �
;

b1ð1; 0Þ ¼½1;�F z�; b2ð1; 0Þ ¼ ½1;�1�; ð56Þ
and
f 1ð1; 0Þ ¼ 1

e
�y þ z

1þ z

� �
� ez 1� zð Þ

ð1þ zÞ3
; ð57Þ

f 2ð1; 0Þ ¼ 1

e
�y þ z

1þ z

� �
� z

ð1þ zÞ2
þ z; ð58Þ
and
K1
1ð1; 0Þ ¼ � 1

e
1� eF z

W

� �
; K1

2ð1; 0Þ ¼ � F z � Gz

W2
; ð59Þ

K2
1ð1; 0Þ ¼ 1�W

e
; K2

2ð1; 0Þ ¼ � 1

W
. ð60Þ
Relative to the (k, m) = (0, 0) case, it is seen that by making one Br-refinement the accuracy in the

description of the manifold is improved by one order in e, since after the fast transient, i.e. for t� e,
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f1(1, 0) = O(e1) while f1(0, 0) = O(e0). According to Eq. (59), this is a direct result of the change in mag-

nitude of K1
2, which goes from K1

2ð0; 0Þ ¼ Oðe�1Þ to K1
2ð1; 0Þ ¼ Oðe0Þ. As expected, the value of K2

1 does

not change, K2
1ð0; 0Þ ¼ K2

1ð1; 0Þ ¼ Oðe�1Þ, leaving the coupling of the slow amplitude f 2 to the fast one f1

unaltered. Furthermore, the values of K1
1 and K2

2 tend to their optimal values. As a result, the reduced

system
Table

The ro

(k, m)

(0, 0)

(1, 0)

(2, 0)
..
.

(1, 0)
d

dt

y

z

� �
� �W�1

F z

1

� �
1

e
�y þ z

1þ z

� �
� z

ð1þ zÞ2
þ z

 !
ð61Þ
is still stiff but now produces an O(e1) error in the t� e period. Performing further Br-refinements, yields
the results collected in Table 1, i.e. the optimal CSP expressions are recovered for b1, K1

1;K
1
2 and K2

2. In con-

trast, a1, b
2 and K2

1 remain as guessed initially.

5.4. The role of Ar-refinements

Returning to the initial guess for the basis vectors (50), one Ar-refinement (k, m) = (0, 1), as illustrated in

Section 2, where the time derivatives of the basis vectors are evaluated analytically, Eqs. (21) and (22),

yields
a1ð0; 1Þ ¼
1

eW�1

� �
; a2ð0; 1Þ ¼

0

1

� �
;

b1ð0; 1Þ ¼½1; 0�; b2ð0; 1Þ ¼ ½�eW�1; 1�; ð62Þ
and
f 1ð0; 1Þ ¼ 1

e
�y þ z

1þ z

� �
� z

ð1þ zÞ2
; ð63Þ

f 2ð0; 1Þ ¼ 1

W
�y þ z

1þ z

� �
� ez

ð1þ zÞ2

" #
� z; ð64Þ
and
K1
1ð0; 1Þ ¼ � 1

e
1� eF z

W

� �
; K1

2ð0; 1Þ ¼
1

e
F z; ð65Þ

K2
1ð0; 1Þ ¼

1

W
� e

1þ Gz

W2
; K2

2ð0; 1Þ ¼ � 1

W
; ð66Þ
where
Gz ¼
2� eð Þz
ð1þ zÞ3

� e
3z 1� zð Þ
ð1þ zÞ4

.

1

le of Br-refinements

b1 K1
1 K2

2 K1
2

[1, 0] � 1
e þOð1=eÞ �1 + O(1/e) O(1/e)

½1;� 1

ð1þzÞ2 þOð1Þ� � 1
e þOð1Þ �1 + O(1) O(1)

½1;� 1

ð1þzÞ2 þOðeÞ� � 1
e þOðeÞ �1 + O(e) O(e)

..

. ..
. ..

. ..
.

½1;� 1

ð1þzÞ2� � 1
e �1 0
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Relative to the (k, m) = (0, 0) case, it is seen that, by making one Ar-refinement, the accuracy in the descrip-

tion of the manifold is not improved, since b1(0, 1) = b1(0, 0) and, therefore, f 1(0, 1) = f 1(0, 0) = O(1) at

t� e. What changes is the magnitude of K2
1 and K2

2 which, from K2
1ð0; 0Þ ¼ Oðe�1Þ and K2

2ð0; 0Þ ¼
Oðe�1Þ, now become K2

1ð0; 1Þ ¼ Oðe0Þ and K2
2ð0; 1Þ ¼ �1þOðe0Þ converging to their optimal values. Due

to these developments, the reduced system
Table

The ro

(k, m)

(0, 0)

(0, 1)

(0, 2)
..
.

(0,1)
d

dt

y

z

� �
�

0

1

� �
1

W
�y þ z

1þ z

� �
� ez

ð1þ zÞ2

" #
� z

 !
ð67Þ
is now non-stiff but still produces an O(1) error. Performing further Ar-refinements, yields the results col-
lected in Table 2, i.e. the optimal CSP expressions are recovered for a1, K

1
1;K

2
1 and K2

2. In contrast, b1, a2
and K1

2 remain as guessed initially.

5.5. Combining the action of Ar- and Br-refinements

Starting with the initial guess for the basis vectors (50) and performing first one Ar-refinement and then

one Br-refinement (k, m) = (1, 1), as illustrated in Section 2, where the time derivatives of the basis vectors

are evaluated analytically, yields
a1ð1; 1Þ ¼
1

eW�1

� �
; a2ð1; 1Þ ¼

�W
1� ð1þ eÞF z

� �
F z

1

� �
; ð68Þ

b1ð1; 1Þ ¼ W
1� ð1þ eÞF z

� �
½1;�F z�; b2ð1; 1Þ ¼ ½eW�1;�1�; ð69Þ
and
f 1ð1; 1Þ ¼ 1

e
�y þ z

1þ z

� �
� e

zð1� zÞ
ð1þ zÞ3

" #
W

1� ð1þ eÞF z

� �
; ð70Þ

f 2ð1; 1Þ ¼ �y þ z
1þ z

� �
� e

ð1þ zÞ2
þ zW

" #
1

W

� �
; ð71Þ

K1
1ð1; 1Þ ¼ � 1

e
þOðe1Þ; K1

2ð1; 1Þ ¼ Oðe0Þ; ð72Þ

K2
1ð1; 1Þ ¼Oðe0Þ; K2

2ð1; 1Þ ¼ �1þOðe1Þ. ð73Þ
It is seen that, in comparison to the (k, m) = (0, 0) case, the fast amplitude decays to a lower value when the

fast time scale becomes exhausted, i.e. t � e, i.e. f1(1, 1) = O(e1) from f1(0, 0) = O(e0), thus improving the

accuracy of the description of the manifold and the accuracy of the solution provided by the simplified
problem. It is easy to show that this is due to the fact that the magnitude of K1

2 decreases by an order,

i.e. from K1
2ð0; 0Þ ¼ Oðe�1Þ to K1

2ð1; 1Þ ¼ Oðe0Þ. Furthermore, the simplified system
2

le of Ar-refinements

a1 K1
1 K2

2 K2
1

[1, 1]T � 1
e þOð1=eÞ �1 + O(1/e) O(1/e)

[1, O(e)]T � 1
e þOð1Þ �1 + O(1) O(1)

[1, O(e2)]T � 1
e þOðeÞ �1 + O(e) O(e)

..

. ..
. ..

. ..
.

[1, 0]T � 1
e �1 0
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d

dt

y

z

� �
�

F z

1

� �
�y þ z

1þ z

� �
� e

ð1þ zÞ2
� zW

 !
1

Wþ eF z

� �
ð74Þ
is now non-stiff since the magnitude of K2
1 decreases by an order; i.e. from K2

1ð0; 0Þ ¼ Oðe�1Þ to

K2
1ð1; 1Þ ¼ Oðe0Þ. Finally, the diagonal elements K1

1 and K2
2 converge to their optimal values, i.e. from

K1
1ð0; 0Þ ¼ �e�1 þ Oðe�1Þ and K2

2ð0; 0Þ ¼ �1þ Oðe�1Þ to K1
1ð1; 1Þ ¼ �e�1 þ Oðe0Þ and K2

2ð1; 1Þ ¼
�1þ Oðe0Þ.
5.6. The eigenvectors as the initial set of basis vectors

Similar results, regarding the accuracy of the description of the manifold and the accuracy and non-stiff-

ness of the simplified problem, provided by one Br and one Ar refinements, (k, m) = (1, 1), are also obtained

if the eigenvectors of the 2 · 2 Jacobian of the RHS in Eqs. (30) and (31) are used as CSP vectors:
a1 ¼
1

0

� �
; a2 ¼

F z
1�e

1

� �
;

b1 ¼ 1;
�F z

1� e

� �
; b2 ¼ 0; 1½ �.

ð75Þ
Such a choice yields
f 1 ¼ 1

e
�y þ z

1þ z

� �
þ e
1� e

2z2

ð1þ zÞ3
;

f 2 ¼ �z

ð76Þ
with
K1
1 ¼ kð1Þ ¼ � 1

e
; K1

2 ¼
�Gz

1� e
; ð77Þ

K2
1 ¼ 0; K2

2 ¼ kð2Þ ¼ �1. ð78Þ

As with the (k, m) = (1, 1) case, it is seen that f1 = O(e) when the fast time scale becomes exhausted, i.e.
t � e. Again, such a decrease is allowed by the values K1

1 ¼ Oðe�1Þ and K1
2 ¼ Oðe0Þ. Furthermore, the

values of K2
1 and K2

2 produce the reduced problem:
d

dt

y

z

� �
�

F z
1�e

1

� �
�zð Þ ð79Þ
which is non-stiff and, since f1 = O(e), produces an O(e) error.
5.7. Impact of time derivatives of CSP vectors on manifold accuracy

Let us examine in detail the effects of the time derivatives of the CSP vectors, involved in the Br-refine-
ment, on the accuracy of the SIM. Let us start from the following choice of basis vectors:
a1ð0; 0Þ ¼
1

0

� �
; b1ð0; 0Þ ¼ ½1; 0�;

a2ð0; 0Þ ¼
0

1

� �
; b2ð0; 0Þ ¼ ½0; 1�.

ð80Þ
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Let us consider separately the two cases of (i) neglecting or (ii) including the time derivative terms during

the Br-refinements. If the time derivative terms are neglected, one finds with increasing number of Br-refine-

ments for the first (fast) basis vector, and corresponding amplitude, the results listed in Tables 3 and 4,

respectively.

The b1 vector converges to the ‘‘fast’’ left eigenvector; f 1(k, 0) decays to O(e1) when the fast time scale is
exhausted, and the manifold, defined by the equation f 1(k, 0) = 0, is obtained with an O(e1+1) accuracy as

shown in Fig. 2 [Left]. This clearly shows that neglecting the contribution of the nonlinearities, as repre-

sented by the time derivatives of the basis vectors, hinders the possibility of improving the decoupling be-

tween the fast and slow subspace, and, in turn, improving the accuracy of the manifold description, which is

always affected by an order O(e1+1) error, independent of the number of refinements.

If the time derivative terms are included, one finds with increasing number of Br-refinements for the first

(fast) basis vector, and corresponding amplitude, the results collected in Tables 5 and 6, respectively.

The b1 vector converges to the fast CSP vector identified by Eq. (37), f 1(k, 0) decays to O(ek) when the
fast time scale is exhausted and the manifold is obtained with an O(ek+1) accuracy as shown in Fig. 2

[Right].

It is also worth noticing that the O(e) improvement in the accuracy of the amplitude of the first mode

provided by the CSP refinements when db/dt are included is obtained by a uniform improvement of the

accuracy of each coefficient in the expansion of the manifold in powers of z, as shown in Table 7.

This finding illustrates how the Br-refinements are able to generate, term by term, the asymptotic expres-

sion of the SIM. Such a result can also be obtained by the Fraser and Roussel method, at the expense of a

higher computational cost and a less stable numerical procedure [14].
The ability of CSP iterations to return the correct asymptotic expansion of the approximate slow man-

ifold was proven recently in [23] for a stiff system with reference to the Michaelis and Menten model char-

acterized by having an explicit small parameter and prescribed slow and fast variables.
Table 3

Case (i): time derivatives are not included and Br(0, 0) = I

(k, m) b1 K1
1 K2

2 K1
2

(0, 0) [1, 0] � 1
e �1 �Fz/e

(1, 0) [1, �Fz] � 1
e �1 Fz

(2, 0) [1, �(1 + e)Fz] � 1
e �1 eFz

..

. ..
. ..

. ..
. ..

.

(1, 0) ½1;� F z
1�e� � 1

e �1 0

The table shows how the b vectors and the K matrix change with Br-refinements.

Table 4

Case (i): time derivatives are not included and Br(0, 0) = I

f1(k, m) O(e�1) O(1) O(e) O(e2) O(e3)

f1(0, 0) 1
e ð�y þ z

1þzÞ � z
ð1þzÞ2

f1(1, 0) 1
e ð�y þ z

1þzÞ þe ðz�1Þz
ð1þzÞ3

f1(2, 0) 1
e ð�y þ z

1þzÞ þe 2z2

ð1þzÞ3 þe2 ðz�1Þz
ð1þzÞ3

..

. ..
. ..

. ..
. ..

. ..
.

f1(1, 0) 1
e ð�y þ z

1þzÞ þe 2z2

ð1þzÞ3 þe2 2z2

ð1þzÞ3 þe3 2z2

ð1þzÞ3 . . .

f 1
Eige

1
e ð�y þ z

1þzÞ þe 2z2

ð1þzÞ3 þe2 2z2

ð1þzÞ3 þe3 2z2

ð1þzÞ3 . . .

The table shows how the first mode amplitude f1 changes with Br-refinements.
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Fig. 2. [Left] CSP vectors converge to eigenvectors with CSP refinements when db/dt are neglected; [Right] Manifold accuracy

increases with CSP refinements when db/dt are accounted for.

Table 5

Case (ii): time derivatives are included and Br(0, 0) = I

(k, m) b1 K1
1 K2

2 K1
2

(0, 0) [1, 0] � 1
e �1 1þz�eþze

ð1þzÞ3e

(1, 0) ½1;� 1

ð1þzÞ2 þ e 1�z
ð1þzÞ3� � 1

e �1 1þz�eþze
ð1þzÞ3

(2, 0) ½1;� 1

ð1þzÞ2 þ e2 1�4zþz2

ð1þzÞ4 � � 1
e �1 �e �1þe�4zeþz2ð1þeÞ

ð1þzÞ4

..

. ..
. ..

. ..
. ..

.

(1, 0) ½1;� 1

ð1þzÞ2� � 1
e �1 0

The table shows how the b1 vector and the K matrix change with Br-refinements.
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6. A 3-species kinetics problem

In this section, we introduce a model problem with the relevant features of a stiff chemical kinetics

mechanism; this model is characterized by having a non-constant, non-explicitly defined, small param-

eter and non-prescribed slow and fast variables. Moreover, the CSP vectors and their time rates of

change are sufficiently simple that they can still be evaluated algebraically, but complicated enough

so as to allow a non-trivial validation of the procedures for the CSP refinements illustrated in Sec-

tions 4 and 5.
To this aim, let us consider the following set of three symbolic reactions modelling the dynamics of 3

species X, Y and Z:
X ¼ 2Y ;

X þ Y ¼ Z;

Y þ Z ¼ X .

ð81Þ
Let also assume that the forward kf and reverse kb reaction rate constants of these three reactions are de-

fined as



Table 6

Case (ii): time derivatives are included and Br(0, 0) = I

f1(k, m) O(e�1) O(1) O(e) O(e2) O(e3)

f1(0, 0) 1
e ð�y þ z

1þzÞ � z
ð1þzÞ2

f1(1, 0) 1
e ð�y þ z

1þzÞ þe ðz�1Þz
ð1þzÞ3

f1(2, 0) 1
e ð�y þ z

1þzÞ �e2 zð1�4zþz2Þ
ð1þzÞ4..

. ..
. ..

. ..
. ..

. ..
.

f1(1, 0) 1
e ð�y þ z

1þzÞ
f 1
Eige

1
e ð�y þ z

1þzÞ þe 2z2

ð1þzÞ3 þe2 2z2

ð1þzÞ3 þe3 2z2

ð1þzÞ3 . . .

The table shows how the first mode amplitude f1 changes with Br-refinements.

Table 7

Coefficients of the zn expansion of the manifolds for case (ii) (time derivatives included) and Br(0, 0) = I

(k, m) z z2 z3 z4

(0, 0) 1 � e �1 + 2e 1 � 3e �1 + 4e. . .
(1, 0) 1 � e2 �1 + 4e2 1 � 9e2 �1 + 16e2. . .
(2, 0) 1 � e3 �1 + 8e3 1 � 27e3 �1 + 64e3. . .
..
. ..

. ..
. ..

. ..
.

(1, 0) 1 �1 1 �1

Exact 1 �1 1 �1

Eige 1 �1 + 2(e2 + O(e3)) 1 � 6(e2 + O(e3)) � 1 + 12(e2 + O(e3))

Each CSP refinement captures one higher order term in the manifold expansion, while using the eigenvectors as basis vectors capture

correctly only the linear term.
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kf ¼ kf1 ; k
f
2 ; k

f
3

� �
¼ 5

e
;
1

e
; 1

� �
; ð82Þ

kb ¼ kb1; k
b
2; k

b
3

� �
¼ 5

e
;
1

e
; 1

� �
; ð83Þ
where e is a small parameter. The set of ODEs describing the evolution of Eq. (81) is thus
dW

dt
¼ g; ð84Þ
where the vector of the unknown is defined as W = (X, Y, Z)T and the right-hand side of (84) as
g ¼
� 5X

e � XY
e þ YZ þ 5Y 2

e þ Z
e � X

10 X
e � XY

e � YZ � 10 Y 2

e þ Z
e þ X

XY
e � YZ � Z

e þ X

2
64

3
75. ð85Þ
Solutions of Eq. (84) are obtained by numerical integration using the LSODE package [2]. The three eigen-

values of the Jacobian of g are computed and found real and negative. The time evolution of the three time

scales (reciprocals of the absolute of the eigenvalues) are shown in Fig. 3: the first two fastest time scales are

much faster than the third one.

As clearly shown in Fig. 4, in the phase space (X, Y, Z), any solution trajectory is attracted towards a 1-

D manifold (a line in a 3-D phase space), after having experienced a fast initial transient during which the

two (fast) mode amplitudes associated with the two fast time scales vanish (the time scales becoming

‘‘exhausted’’).
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Fig. 4. All solution trajectories in the phase space are attracted by a 1-D manifold; markers are drawn at constant time intervals;

e = 0.01.
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The problem at hand, being 3-dimensional, can be cast in CSP form as
dW

dt
¼ a1f 1 þ a2f 3 þ a3f 3; ð86Þ
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where a1, a2 and a3 are 3-dimensional column CSP vectors, and the f i are the corresponding mode ampli-

tudes. As the fastest time scale becomes exhausted, the amplitude f 1 becomes negligible, i.e. f 1 � 0 (M = 1).

Similarly, when the second fastest time scale becomes exhausted, both amplitudes f 1 and f 2 become negli-

gible, i.e. f 1 � 0 and f 2 � 0 (M = 2). In order for the simplified problem to provide a pre-specified accuracy,

the first two modes are declared exhausted if the following conditions are met:
s2ja1f 1j < ereljWj þ eabs;

s3ja1f 1 þ a2f 2j < ereljWj þ eabs;
ð87Þ
where |v| denotes the absolute value of the elements of the vector v, s2 and s3 are the second and third time

scales, respectively, erel is the relative error and eabs is the absolute error. In the numerical results that will be

reported next, erel = 1e�03 and eabs = 1e�10.

A leading order approximation of the 1-D manifold can be obtained algebraically by employing the left

eigenvectors of J as the vectors bi and by setting the two fastest modal amplitudes f 1, f 2 equal to zero:
f 1 ¼ b1 � g ¼ 0; f 2 ¼ b2 � g ¼ 0 ð88Þ

yielding
Z ¼X
Y
�
5 �X þ Y 2
� �

1þ 3X þ 4Y þ 6Y 2
� �

2Y X þ 2Y þ 2Y 2
� �

e
;

Z ¼X
Y
þ�X � 3X 2 � 4XY � 5XY 2 þ 3X 2Y 2 þ 4XY 3 þ 6XY 4

Y 1þ 3X þ 4Y þ 6Y 2 þ Y eþ XY eþ 4Y 2eþ 2Y 3e
� � . ð89Þ
The solution of the set of two algebraic equations, Eq. (88), is the intersection of the two surfaces in the 3-D

phase plane as shown in Fig. 5. It is also apparent how the trajectory in Fig. 5 progressively relaxes at the
intersection of the two surfaces as soon as the two fastest modes, associated with the two fastest time scales,

become exhausted one after the other.

As with the Davis–Skodje problem, we will apply the CSP vector refinement procedure to this

3-species dynamical system. In this model problem, the CSP vectors can be found both algebraically

or numerically by adopting the algorithms presented in Sections 4 and 5. A number of different refine-

ment strategies can be envisaged, each diversified on the basis of (i) the choice of the initial basis vec-

tors, (ii) the number of initial refinements not including the basis vectors time derivatives, and (iii)

whether a final refinement including time derivatives is carried out. Table 8 summarizes all the different
strategies considered here.

As for the Davis–Skodje problem, the effectiveness of CSP vector refinements will be gauged by inspec-

tion of the evolution of the ensuing CSP fast modal amplitudes along a given trajectory. We chose a tra-

jectory corresponding to initial condition X0 = Y0 = Z0 = 0.5 and e = 0.01.

Method 1 involves using the eigenvectors of J as CSP vectors. Although not yielding the best choice of

vectors but just their leading order approximation, we adopted the results of this method (reported in Figs.

6 and 7) as a reference enabling us to compare all other methods described in Table 8.

First, we want to assess that the CSP refinements, when the contribution of the time derivatives of the
CSP vectors is not included, converge to the results of Method 1 (Phase (1) only, Section 4). To this aim,

Method 3 and 4 involve a number (1, 2, or 4) of CSP refinements wherein the contribution of the time deriv-

atives of the CSP vectors is not included, adopting as initial basis the identity matrix and a randomly cho-

sen matrix, respectively.

Fig. 6 shows that the amplitude of the first of the fast modes f 1 initially exhibits a fast decrease under the

action of the two fast time scales until it reaches the asymptotic value f 1
1, estimated according to the

expression Eq. (A.30):



Fig. 5. 1-D manifold defined as the intersection of the two surfaces defined by Eqs. (88) or (89).

Table 8

List of refinement strategies (methods) and of the associated algorithmic options

Method Initial basis No. of refinements: dJ
dt ¼ 0 No. of refinements: dJ

dt 6¼ 0

1 Eigenvectors 0 0

2 Eigenvectors 0 1 (M fixed)

3 Identity 1, 2, 4 0

4 Random 1, 2, 4 0
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f r
1 � �

X
r0¼1;M

T r
r0K

r0

s f
s; s ¼ M þ 1; 3.
From this expression is apparent that f r
1 can theoretically vanish providing a perfect decoupling of the fast

and slow subspace be obtainable via ideal basis vectors (e.g. Kr0

s ¼ 0). Otherwise f r
1 evolves according to

the (slow) time scales of the slow amplitudes f s. Indeed, that the latter circumstance is the one occurring

when the approximations of the ideal vectors as offered by the CSP refinements are adopted can be appre-

ciated by noting in Fig. 6, and also in Fig. 7, that the magnitude of f 1, past a large drop on a short time

period (fast time scale), stays leveled at a small value for a long time period (slow time scale) hindered in its

further reduction by the action of the residual coupling with the slow time scales, and only at large times it
eventually vanishes as the system reaches equilibrium. A qualitatively similar behavior is observed for the

amplitude of the second of the fast modes f 2, although no data have been demonstrated here. The ampli-

tude of the third (slow) mode f 3 evolves at all times with the slowest time scale.

It is clear from Fig. 6 that the evolution of the fast amplitude f 1 as obtained by Method 3 and 4 converge

to that obtained by Method 1. This result may be thought of as the numerical counterpart of the analytic

results obtained for the Davis–Skodje problem and displayed in Table 4.
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Next, we want to assess the effect of the CSP refinements when the contribution of the time derivatives of

the CSP vectors is included. To this aim, Method 2 involves starting with the eigenvector basis (as in

Method 1), then finding the number of exhausted modes ~M with respect to this basis, and finally carrying

out one CSP refinement wherein the contribution of the time derivatives of the CSP vectors is included

(Phase (2), see Section 4) and assuming M ¼ ~M . Fig. 7 shows the number ~M of exhausted modes found

by Method 1, according to the criteria (87), and the evolution of the fast amplitudes f 1 and f 2 as obtained

by Methods 1 and 2. Since the refinement procedure affects only the first M modes, by the consideration of

the time derivatives of the CSP vectors, then when ~M ¼ 1, f 1 is affected and f 2 is not, while when ~M ¼ 2, both
f 1 and f 2 are affected. It is shown that consideration of the time derivative terms does indeed allow the ampli-

tudes f 1 and f 2 to drop to much lower values; so that a more accurate description of the manifold is obtained.
f1 m e t h o d 1 .o d 4 . ( 1 r e f . )t h o d 4 . ( 2 r e f . )o d 4 . ( 4 r e f . )
3 ( l e f t ) a n d 4 ( r i g h t ) . A n i n i t i a l i d e n t i t y o r r a n d o m b a s i s c o n v e r g e t o t h e e i g e n v e c t o r s o f
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7. Conclusions

Given that (i) it has been proved [23] that the CSP method can provide high-order approximations of the

slow invariant manifolds (SIM) characterizing the dynamics of stiff system of ODEs, and (ii) the CSP refine-

ments provide high-order accuracy for a nonlinear problem only when the time rates of change of the CSP
vectors are properly accounted for [18–20], and finally (iii) thus far, no specific analysis was available in the

literature on how to evaluate the time rates of change of the CSP vectors, the aim of this paper has been to

derive the formulae needed to evaluate the time rates of change of the CSP vectors whenever these terms

cannot be computed algebraically.

With reference to two simple model problems, we showed that, by adopting these formulae, the iterative

procedures of CSP refinements, illustrated in Sections 3 and 4, yield the asymptotic expansion of the SIM in

powers of the spectral gap, the small parameter in the singular perturbation analysis of these fast/slow systems.

We also showed that Phase (2) of the Br-refinement requires the availability of the time rate of change of
the Jacobian matrix dJ/dt of the RHS of the set of ODEs describing the system dynamics, while the

Ar-refinement requires the availability of both dJ/dt and d2J/dt2. We have also shown that dJ/dt and

d2J/dt2 depend on the state of the system only, and that they are local measures of the geometrical char-

acteristics of the manifold (such as local curvature and higher order terms), since they involve the terms

oJ/oyi and o2J/oyioyj. As a consequence, the time rates of change of the CSP vectors also depend exclusively

on the local state variables. Hence, tabulation methods, such as PRISM [32] or ISAT [33], can be used to

generate look-up tables for SIMs of high-order accuracy found by means of the CSP refinement procedure.

We presented both analytical and numerical evidence of the CSP performance. Regarding the numerics,
we showed that, in practice, only one or (rarely) two CSP refinements can be performed, if the time rates of

change of the CSP vectors are taken into account. Here, the limitations, solely related to issues of compu-

tational efficiency and not of theoretical nature, are set by the need to have available high-order time deriv-

atives of the Jacobian.
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Appendix A

A.1. The Br-refinement

The evolution of the mode amplitudes fi is governed by the equations:
df i

dt
¼
X
j¼1;N

Ki
jf

j; i ¼ 1;N . ðA:1Þ
Given a set of basis vectors at the (k, m)-th refinement level and Eq. (A.1), one can recast the evolution of

the fast amplitudes as



780 M. Valorani et al. / Journal of Computational Physics 209 (2005) 754–786
df rðk;mÞ
dt

¼ Kr
rðk;mÞf

rðk;mÞ þ Kr
sðk;mÞf

sðk;mÞ; ðA:2Þ
where
Kr
rðk;mÞ ¼

dBrðk;mÞ
dt

þ Brðk;mÞJ
� �

Arðk;mÞ; ðA:3Þ

Kr
sðk;mÞ ¼

dBrðk;mÞ
dt

þ Brðk;mÞJ
� �

Asðk;mÞ; ðA:4Þ
and T r
rðk;mÞ is the inverse of Kr

rðk;mÞ. Recasting Eq. (A.2) as
df rðk;mÞ
dt

¼ Kr
rðk;mÞ f rðk;mÞ þ T r

rðk;mÞKr
sðk;mÞf

sðk;mÞ
� �

; ðA:5Þ
it is seen that the asymptotic limit for fr(k, m) is
f rðk;mÞ � �T r
rðk;mÞKr

sðk;mÞf
sðk;mÞ. ðA:6Þ
Wishing to make the amplitudes in fr as small as possible in the period where the fast time scales are ex-

hausted, Eq. (A.5) suggests that a new set of fast amplitudes be defined as
f rðk þ 1;mÞ ¼ f rðk;mÞ þ T r
rðk;mÞKr

sðk;mÞf
sðk;mÞ. ðA:7Þ
This is equivalent of defining a new set of basis vectors as
Brðk þ 1;mÞ ¼ T r
rðk;mÞ

dBrðk;mÞ
dt

þ Brðk;mÞJ
� �

; ðA:8Þ

Arðk þ 1;mÞ ¼ Arðk;mÞ; ðA:9Þ
Bsðk þ 1;mÞ ¼ Bsðk;mÞ; ðA:10Þ
Asðk þ 1;mÞ ¼ Irr � Arðk þ 1;mÞBrðk þ 1;mÞ

� �
Asðk;mÞ; ðA:11Þ
where the last relation is required to restore the orthogonality between As(k + 1, m) and the new, rotated

Br(k + 1, m) basis vector.

A.2. The Ar-refinement

According to Eq. (A.1), at the (k, m) refinement level the evolution of the slow amplitudes is governed by

the equations:
df sðk;mÞ
dt

¼ Ks
rðk;mÞf

rðk;mÞ þ Ks
sðk;mÞf

sðk;mÞ; ðA:12Þ
where � �

Ks

rðk;mÞ ¼
dBsðk;mÞ

dt
þ Bsðk;mÞJ Arðk;mÞ; ðA:13Þ

Ks
sðk;mÞ ¼

dBsðk;mÞ
dt

þ Bsðk;mÞJ
� �

Asðk;mÞ. ðA:14Þ
Wishing to limit the influence of the fast time scales to the evolution of the slow amplitudes, Eq. (A.12) is

recast as
d f sðk;mÞ � Ks
rðk;mÞT r

rðk;mÞf
rðk;mÞ

� �
dt

¼ � dKs
rðk;mÞT r

rðk;mÞ
dt

f rðk;mÞ þ Ks
sðk;mÞ � Ks

rðk;mÞT r
rðk;mÞKr

sðk;mÞ
� �

f sðk;mÞ ðA:15Þ
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suggesting that a new set of slow amplitudes be defined as
f sðk;mþ 1Þ ¼ f sðk;mÞ � Ks
rðk;mÞT r

rðk;mÞf
rðk;mÞ. ðA:16Þ
This is equivalent of defining a new set of basis vectors as
Arðk;mþ 1Þ ¼ � dArðk;mÞ
dt

þ JArðk;mÞ
� �

T r
rðk;mÞ; ðA:17Þ

Brðk;mþ 1Þ ¼ Brðk;mÞ; ðA:18Þ
Bsðk;mþ 1Þ ¼ Bsðk;mÞ I rr � Arðk;mþ 1ÞBrðk;mþ 1Þ

� �
; ðA:19Þ

Asðk;mþ 1Þ ¼ Asðk;mÞ. ðA:20Þ
A.3. Action of the refinements

The action of the Br- and Ar-refinements, Eqs. (11)–(14) or (A.4)–(A.7) and (16)–(19) or (A.11)–

(A.14), respectively, are clearly manifested if the magnitude of the matrices Kr
rðk;mÞ;Kr

sðk;mÞ;
Ks

rðk;mÞ and Ks
sðk;mÞ is examined, for increasing values of the refinement levels ‘‘k’’ and/or ‘‘m’’. As

was shown previously, at the (k, m)-th refinement level the fast and slow amplitudes are governed by

the equations:
df rðk;mÞ
dt

¼ Kr
rðk;mÞf

rðk;mÞ þ Kr
sðk;mÞf

sðk;mÞ; ðA:21Þ

df sðk;mÞ
dt

¼ Ks
rðk;mÞf

rðk;mÞ þ Ks
sðk;mÞf

sðk;mÞ. ðA:22Þ
At this point it is assumed that
kT r
rðk;mÞk � OðsMÞ; kKs

sðk;mÞk � Oð1=sMþ1Þ; ðA:23Þ

where si is the i-th time scale in the problem.

A single Br-refinement yields
Kr
rðk þ 1;mÞ ¼ Kr

rðk;mÞ þ T r
rðk;mÞKr

sðk;mÞKs
rðk;mÞ; ðA:24Þ

Kr
sðk þ 1;mÞ ¼

d T r
rðk;mÞKr

sðk;mÞ
� �

dt
þ T r

rðk;mÞKr
sðk;mÞ

� �
Ks

sðk þ 1;mÞ; ðA:25Þ

Ks
rðk þ 1;mÞ ¼ Ks

rðk;mÞ; ðA:26Þ
Ks

sðk þ 1;mÞ ¼ Ks
sðk;mÞ � Ks

rðk;mÞT r
rðk;mÞKr

sðk;mÞ. ðA:27Þ
According to the estimates (A.23) and the fact that the fastest non-exhausted time scale is sM+1, Eq. (A.25)

suggests that
kKr
sðk þ 1;mÞk � O

sM
scur

Kr
sðk;mÞ

� �
þO

sM
sMþ1

Kr
sðk;mÞ

� �
; ðA:28Þ
where the two terms on the RHS correspond to the two terms in the RHS of Eq. (A.25) and scur is the cur-
rently dominant time scale. Since the M fastest time scales are exhausted, it follows that scur P sM+1 so that

Eq. (30a) simplifies to
kKr
sðk þ 1;mÞk � O eKr

sðk;mÞ
� �

; ðA:29Þ
where e = sM/sM+1 is a measure of the fast/slow time scale separation. Eq. (A.29) indicates that the coupling
of the fast amplitudes to the slow ones in Eq. (A.21) decreases by an order of e each time a Br-refinement is
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performed. In contrast, the coupling of the slow amplitudes to the fast ones in Eq. (A.22) stays unaffected.

Since, as Eq. (A.21) shows, the asymptotic value of fr(k, m) is
f rðk;mÞ � �T r
rðk;mÞKr

sðk;mÞf
sðk;mÞ; ðA:30Þ
the additional Br-refinement allows the fast amplitudes to decrease to a lower value. In view of the
simplified problem (10), such a refinement allows the computation of a more accurate solution.

Similarly, one Ar-refinement yields
Kr
rðk;mþ 1Þ ¼ Kr

rðk;mÞ þ Kr
sðk;mÞKs

rðk;mÞT r
rðk;mÞ; ðA:31Þ

Kr
sðk;mþ 1Þ ¼ Kr

sðk;mÞ; ðA:32Þ

Ks
rðk;mþ 1Þ ¼ �

d Ks
rðk;mÞT r

rðk;mÞ
� �

dt
þ Ks

sðk;mþ 1Þ Ks
rðk;mÞT r

rðk;mÞ
� �

; ðA:33Þ

Ks
sðk;mþ 1Þ ¼ Ks

sðk;mÞ � Ks
rðk;mÞT r

rðk;mÞKr
sðk;mÞ. ðA:34Þ
These relations suggest that
kKs
rðk;mþ 1Þk � O eKs

rðk;mÞ
� �

; ðA:35Þ
i.e. the coupling of the slow amplitudes to the fast ones in Eq. (A.22) decreases by an order of e each time an

Ar-refinement is performed, making the simplified problem (10) less stiff. However, since the coupling of the

fast amplitudes to the slow ones in Eq. (A.21) is not affected, the accuracy of the simplified problem is not

improved.
Appendix B. CSP vector time derivative derivation

The CSP vector time derivatives are obtained by means of chain rule differentiation of the relations illus-

trated in Section 4. In the following we summarize the main results.

Given that
dkrrð0; 0Þ
dt

¼ d

dt
dBrð0; 0Þ

dt
þ Brð0; 0ÞJ

� �
Arð0; 0Þ

� �
¼ d

dt
Brð0; 0ÞJArð0; 0Þ½ � ¼ Brð0; 0Þ dJ

dt
Arð0; 0Þ; ðB:1Þ

dsrrð0; 0Þ
dt

¼ �srrð0; 0Þ
dkrrð0; 0Þ

dt
srrð0; 0Þ ¼ �srrð0; 0ÞBrð0; 0Þ dJ

dt
Arð0; 0Þsrrð0; 0Þ; ðB:2Þ
then the time derivative of Br(1, 0) and Br(1, 1) can be evaluated as
dBrð1; 1Þ
dt

¼ dBrð1; 0Þ
dt

¼ dsrrð0; 0Þ
dt

Brð0; 0ÞJ þ srrð0; 0ÞBrð0; 0Þ dJ
dt

¼ �srrð0; 0ÞBrð0; 0Þ dJ
dt

Arð0; 0Þsrrð0; 0ÞBrð0; 0ÞJ þ srrð0; 0ÞBrð0; 0Þ dJ
dt

¼ �srrð0; 0ÞBrð0; 0Þ dJ
dt

Arð0; 0ÞBrð1; 0Þ þ srrð0; 0ÞBrð0; 0Þ dJ
dt

¼ srrð0; 0ÞBrð0; 0Þ dJ
dt

I � Arð0; 0ÞBrð1; 0Þ½ �. ðB:3Þ
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Moreover, given that
dkrrð1; 0Þ
dt

¼ d

dt
Brð1; 0ÞJArð0; 0Þ½ � ¼ dBrð1; 0Þ

dt
JArð0; 0Þ þ Brð1; 0Þ dJ

dt
Arð0; 0Þ;

dsrrð1; 0Þ
dt

¼ �srrð1; 0Þ
dkrrð1; 0Þ

dt
srrð1; 0Þ

¼ �srrð1; 0Þ
dBrð1; 0Þ

dt
JArð0; 0Þsrrð1; 0Þ � srrð1; 0ÞBrð1; 0Þ dJ

dt
Arð0; 0Þsrrð1; 0Þ

¼ �srrð1; 0Þ
dBrð1; 0Þ

dt
Arð1; 1Þ � srrð1; 0ÞBrð1; 0Þ dJ

dt
Arð0; 0Þsrrð1; 0Þ; ðB:4Þ
then the time derivative of Ar(1, 1) and Ar(2, 1) can be evaluated as
dArð1; 1Þ
dt

¼ dArð2; 1Þ
dt

¼ d

dt
JArð0; 0Þsrrð1; 0Þ
� �

¼ dJ
dt

Arð0; 0Þsrrð1; 0Þ þ J
dArð0; 0Þ

dt
srrð1; 0Þ þ JArð0; 0Þ

dsrrð1; 0Þ
dt

¼ dJ
dt

Arð0; 0Þsrrð1; 0Þ � JArð0; 0Þsrrð1; 0Þ
dBrð1; 0Þ

dt
Arð1; 1Þ

� JArð0; 0Þsrrð1; 0ÞBrð1; 0Þ dJ
dt

Arð0; 0Þsrrð1; 0Þ

¼ dJ
dt

Arð0; 0Þsrrð1; 0Þ � Arð1; 1Þ
dBrð1; 0Þ

dt
Arð1; 1Þ � Arð1; 0ÞBrð1; 0Þ dJ

dt
Arð0; 0Þsrrð1; 0Þ;

¼ I � Arð1; 1ÞBrð1; 0Þ½ � dJ
dt

Arð0; 0Þsrrð1; 0Þ � Arð1; 1Þ
dBrð1; 0Þ

dt
Arð1; 1Þ. ðB:5Þ
It follows that the time derivative of Br(2, 1) can be evaluated as
dBrð2; 1Þ
dt

¼ d

dt
srrð1; 1Þ

dBrð1; 0Þ
dt

þ Brð1; 0ÞJ
� �� �

¼ dsrrð1; 1Þ
dt

dBrð1; 0Þ
dt

þ srrð1; 1Þ
d2Brð1; 0Þ

dt2
þ dsrrð1; 1Þ

dt
Brð1; 1ÞJ þ srrð1; 1Þ

dBrð1; 0Þ
dt

J

þ srrð1; 1ÞBrð1; 0Þ dJ
dt

¼ dsrrð1; 1Þ
dt

dBrð1; 0Þ
dt

þ Brð1; 1ÞJ
� �

þ srrð1; 1Þ
d2Brð1; 0Þ

dt2
þ srrð1; 1Þ

dBrð1; 0Þ
dt

J

þ srrð1; 1ÞBrð1; 1Þ dJ
dt

¼ dsrrð1; 1Þ
dt

krrð1; 1ÞBrð2; 1Þ þ srrð1; 1Þ
d2Brð1; 0Þ

dt2
þ srrð1; 1Þ

dBrð1; 0Þ
dt

J

þ srrð1; 1ÞBrð1; 1Þ dJ
dt

; ðB:6Þ
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where
dsrrð1; 1Þ
dt

¼ �srrð1; 1Þ
dkrrð1; 1Þ

dt
srrð1; 1Þ

¼ �srrð1; 1Þ
d

dt
dBrð1; 0Þ

dt
þ Brð1; 0ÞJ

� �
Arð1; 1Þ

� �
srrð1; 1Þ

¼ �srrð1; 1Þ
d2Brð1; 0Þ

dt2
Arð1; 1Þ þ

dBrð1; 0Þ
dt

dArð1; 1Þ
dt

þ Brð1; 0Þ dJ
dt

Arð1; 1Þ
�

þ Brð1; 0ÞJ dArð1; 1Þ
dt

þ dBrð1; 0Þ
dt

JArð1; 1Þ
�
srrð1; 1Þ. ðB:7Þ
Replacing Eq. (B.6) in Eq. (B.7) yields
dBrð2; 1Þ
dt

¼ �srrð1; 1Þ
d2Brð1; 0Þ

dt2
Arð1; 1ÞBrð2; 1Þ � srrð1; 1Þ

dBrð1; 0Þ
dt

dArð1; 1Þ
dt

Brð2; 1Þ

� srrð1; 1ÞBrð1; 0Þ dJ
dt

Arð1; 1ÞBrð2; 1Þ � srrð1; 1ÞBrð1; 0ÞJ dArð1; 1Þ
dt

Brð2; 1Þ � srrð1; 1Þ

� dBrð1; 0Þ
dt

JArð1; 1ÞBrð2; 1Þ þ srrð1; 1Þ
d2Brð1; 0Þ

dt2
þ srrð1; 1Þ

dBrð1; 0Þ
dt

J

þ srrð1; 1ÞBrð1; 1Þ dJ
dt

. ðB:8Þ
After regrouping, one obtains
dBrð2; 1Þ
dt

¼ srrð1; 1Þ
dBrð1; 0Þ

dt
J þ Brð1; 0Þ dJ

dt
þ d2Brð1; 0Þ

dt2

� �
I � Arð1; 1ÞBrð2; 1Þ½ �

� srrð1; 1Þ
dBrð1; 0Þ

dt
þ Brð1; 0ÞJ

� �
dArð1; 1Þ

dt
Brð2; 1Þ. ðB:9Þ
From
dBrð1; 0Þ
dt

þ Brð1; 0ÞJ ¼ krrð1; 1ÞBrð2; 1Þ; ðB:10Þ
one obtains
dBrð2; 1Þ
dt

¼ srrð1; 1Þ
dBrð1; 0Þ

dt
J þ Brð1; 0Þ dJ

dt
þ d2Brð1; 0Þ

dt2

� �
I � Arð1; 1ÞBrð2; 1Þ½ �

� Brð2; 1Þ dArð1; 1Þ
dt

Brð2; 1Þ. ðB:11Þ
The second order time derivative of Br(1, 0) can be obtained as
d2Brð1; 0Þ
dt2

¼ d

dt
srrð0; 0ÞBrð0; 0Þ dJ

dt
I � Arð0; 0ÞBrð1; 0Þð Þ

� �

¼ dsrrð0; 0Þ
dt

Brð0; 0Þ dJ
dt

þ srrð0; 0ÞBrð0; 0Þ d
2J
dt2

� dsrrð0; 0Þ
dt

Brð0; 0Þ dJ
dt

Arð0; 0ÞBrð1; 0Þ

� srrð0; 0ÞBrð0; 0Þ d
2J
dt2

Arð0; 0ÞBrð1; 0Þ � srrð0; 0ÞBrð0; 0Þ dJ
dt

Arð0; 0Þ
dBrð1; 0Þ

dt
. ðB:12Þ
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After regrouping, one obtains
d2Brð1; 0Þ
dt2

¼ dsrrð0; 0Þ
dt

Brð0; 0Þ dJ
dt

þ srrð0; 0ÞBrð0; 0Þ d
2J
dt2

� �
I � Arð0; 0ÞBrð1; 0Þ½ � � srrð0; 0ÞBrð0; 0Þ

� dJ
dt

Arð0; 0Þ
dBrð1; 0Þ

dt
. ðB:13Þ
Additional formulae for terms not appearing in the refinement procedure but required for diagnostic pur-
poses, e.g. in the evaluation of the off-diagonal blocks krs and ksr are reported in the following:
dAsð1; 0Þ
dt

¼ dAsð1; 1Þ
dt

¼ d

dt
I � Arð0; 0ÞBrð1; 0Þð ÞAsð0; 0Þ½ � ¼ �Arð0; 0Þ

dBrð1; 0Þ
dt

Asð0; 0Þ;

dBsð1; 1Þ
dt

¼ dBsð2; 1Þ
dt

¼ d

dt
Bsð1; 0Þ I � Arð1; 1ÞBrð1; 1Þð Þ½ �

¼ d

dt
Bsð0; 0Þ I � Arð1; 1ÞBrð1; 0Þð Þ½ �

¼ �Bsð0; 0Þ dArð1; 1Þ
dt

Brð1; 0Þ þ Arð1; 1Þ
dBrð1; 0Þ

dt

� �
;

dAsð2; 1Þ
dt

¼ d

dt
I � Arð2; 1ÞBrð2; 1Þð ÞAsð1; 1Þ½ � ¼ d

dt
I � Arð1; 1ÞBrð2; 1Þð ÞAsð1; 0Þ½ �

¼ � dArð1; 1Þ
dt

Brð2; 1Þ þ Arð1; 1Þ
dBrð2; 1Þ

dt

� �
Asð1; 0Þ þ I � Arð1; 1ÞBrð2; 1Þð Þ dAsð1; 0Þ

dt
.
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